Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters

Author:

Sampaio Pedro SousaORCID,Almeida Ana SofiaORCID,Brites Carla MoitaORCID

Abstract

The main goal of this study was to test the ability of an artificial neural network (ANN) for rice quality prediction based on grain physical parameters and to conduct a comparison with multiple linear regression (MLR) using 66 samples in duplicate. The parameters used for rice quality prediction are related to biochemical composition (starch, amylose, ash, fat, and protein concentration) and pasting parameters (peak viscosity, trough, breakdown, final viscosity, and setback). These parameters were estimated based on grain appearance (length, width, length/width ratio, total whiteness, vitreous whiteness, and chalkiness), and milling yield (husked, milled, head) data. The MLR models were characterized by very low coefficient determination (R2 = 0.27–0.96) and a root-mean-square error (RMSE) (0.08–0.56). Meanwhile, the ANN models presented a range for R2 = 0.97–0.99, being characterized for R2 = 0.98 (training), R2 = 0.88 (validation), and R2 = 0.90 (testing). According to these results, the ANN algorithms could be used to obtain robust models to predict both biochemical and pasting profiles parameters in a fast and accurate form, which makes them suitable for application to simultaneous qualitative and quantitative analysis of rice quality. Moreover, the ANN prediction method represents a promising approach to estimate several targeted biochemical and viscosity parameters with a fast and clean approach that is interesting to industry and consumers, leading to better assessment of rice classification for authenticity purposes.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference57 articles.

1. Rice Quality: A Guide to Rice Properties and Analysis;Bhattacharya,2011

2. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel

3. Composition and functional properties of rice

4. Composition of amino acids, fatty acids, minerals, and dietary fiber in some of the local and import rice varieties of Malaysia;Thomas;Int. Food Res. J.,2015

5. A simplified assay for milled-rice amylose;Juliano;Cereal Sci. Today,1971

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3