Abstract
This study investigated the fermentation of isolated soy glycinin by using the Lactiplantibacillus plantarum B1-6 strain, its reduction effect on immunoglobulin E (IgE) reactivity, the relationship with protein aggregation/gelation state and conformational changes. Fermentation was performed under different glycinin concentrations (0.1%, 0.5%, 1% and 2%, w/v) and varied fermentation terminal pH levels (FT-pH) (pH 6.0, 4.5, 4.0 and 3.5). L. plantarum B1-6 showed potency in reducing immunoreactivity to 0.10–69.85%, as determined by a sandwich enzyme-linked immunosorbent assay. At a FT-pH of 6.0 and 4.5, extremely low IgE reactivity (0.1–22.32%) was observed. Fermentation resulted in a great increase (2.31–6.8-fold) in particle size and a loss of intensity in A3 and basic subunits. The conformation of glycinin was altered, as demonstrated by improved surface hydrophobicity (1.33–7.39-fold), decreased intrinsic fluorescence intensity and the α-helix structure. Among the four selected concentrations, glycinin at 1% (w/v, G-1) evolved the greatest particles during fermentation and demonstrated the lowest immunoreactivity. Principal component analysis confirmed that particle size, intrinsic fluorescence intensity, α-helix and ionic bond were closely related to immunoreactivity reduction.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献