Prioritizing Environmental Attributes to Enhance Residents’ Satisfaction in Post-Industrial Neighborhoods: An Application of Machine Learning-Augmented Asymmetric Impact-Performance Analysis

Author:

Ji Xian1ORCID,Shang Furui1,Liu Chang1,Kang Qinggong1,Wang Rui1,Dou Chenxi1

Affiliation:

1. Jangho Architecture College, Northeastern University, Shenyang 110169, China

Abstract

Post-industrial neighborhoods are valued for their historical and cultural significance but often contend with challenges such as physical deterioration, social instability, and cultural decay, which diminish residents’ satisfaction. Leveraging urban renewal as a catalyst, it is essential to boost residents’ satisfaction by enhancing the environmental quality of these areas. This study, drawing on data from Shenyang, China, utilizes the combined strengths of gradient boosting decision trees (GBDTs) and asymmetric impact-performance analysis (AIPA) to systematically identify and prioritize the built-environment attributes that significantly enhance residents’ satisfaction. Our analysis identifies twelve key attributes, strategically prioritized based on their asymmetric impacts on satisfaction and current performance levels. Heritage maintenance, property management, activities, and heritage publicity are marked as requiring immediate improvement, with heritage maintenance identified as the most urgent. Other attributes are categorized based on their potential to enhance satisfaction or their lack of immediate improvement needs, enabling targeted and effective urban revitalization strategies. This research equips urban planners and policymakers with critical insights, supporting informed decisions that markedly improve the quality of life in these distinctive urban settings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3