A Multi-Information Fusion Method for Repetitive Tunnel Disease Detection

Author:

Gan Zhiyuan12ORCID,Teng Li3,Chang Ying3,Feng Xinyang1,Gao Mengnan12,Gao Xinwen12ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

2. SHU-SUCG Research Center of Building Industrialization, Shanghai University, Shanghai 200040, China

3. Shanghai Urban Construction City Operation (Group) Co., Ltd., Shanghai 200023, China

Abstract

Existing tunnel defect detection methods often lack repeated inspections, limiting longitudinal analysis of defects. To address this, we propose a multi-information fusion approach for continuous defect monitoring. Initially, we utilized the You Only Look Once version 7 (Yolov7) network to identify defects in tunnel lining videos. Subsequently, defect localization is achieved with Super Visual Odometer (SuperVO) algorithm. Lastly, the SuperPoint–SuperGlue Matching Network (SpSg Network) is employed to analyze similarities among defect images. Combining the above information, the repeatability detection of the disease is realized. SuperVO was tested in tunnels of 159 m and 260 m, showcasing enhanced localization accuracy compared to traditional visual odometry methods, with errors measuring below 0.3 m on average and 0.8 m at maximum. The SpSg Network surpassed the depth-feature-based Siamese Network in image matching, achieving a precision of 96.61%, recall of 93.44%, and F1 score of 95%. These findings validate the effectiveness of this approach in the repetitive detection and monitoring of tunnel defects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3