Vegetation Dynamics and Megaherbivore Presence of MIS 3 Stadials and Interstadials 10–8 Obtained from a Sediment Core from Auel Infilled Maar, Eifel, Germany

Author:

Britzius Sarah12,Sirocko Frank2

Affiliation:

1. Department of Isotope Geochemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany

2. Department of Geosciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany

Abstract

We present a record of pollen and spores of coprophilous fungi from a sediment core from Auel infilled maar, Eifel, Germany, covering the period from 42,000 to 36,000 yr b2k. We can show that vegetation cover was dominated by a boreal forest with components of steppe and cold-temperate wood taxa. The proportion of wood taxa was higher during interstadials, whereas steppe-vegetation became more prominent during stadials. During Heinrich stadial 4, temperate taxa are mostly absent. Spores of coprophilous fungi show that megaherbivores were continuously present, albeit in a larger number during stadials when steppe environment with abundant steppe herbs expanded. With the onset of Greenland stadial 9, forests became more open, allowing for steppe-environment to evolve. The shift in vegetation cover coincides with the highest values of herbivore biomass at the time that Neanderthal humans demised and Anatomically Modern Humans most probably arrived in Central and Western Europe. Megaherbivore biomass was a direct consequence of vegetation cover/availability of food resources and thus an indirect consequence of a changing climate. Herds of large herbivores following suitable (steppe) habitats may have been one cause of the migration of AMH into Europe, going along with their prey to productive hunting grounds.

Funder

Johannes Gutenberg University Mainz

Max Planck Institute for Chemistry Mainz

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3