SAVTA: A Hybrid Vehicular Threat Model: Overview and Case Study

Author:

Hamad MohammadORCID,Prevelakis VassilisORCID

Abstract

In recent years, significant developments were introduced within the vehicular domain, evolving the vehicles to become a network of many embedded systems which depend on a set of sensors to interact with each other and with the surrounding environment. While these improvements have increased the safety and incontestability of the automotive system, they have opened the door for new potential security threats which need to be defined, assessed, and mitigated. The SAE J3061 standard has defined threat modeling as a critical step toward the secure development process for vehicle systems, but it did not determine which method could be used to achieve this process. Therefore, many threat modeling approaches were adopted. However, using one individual approach will not identify all the threats which could target the system, and may lead to insufficient mitigation mechanisms. Thus, having complete security requires the usage of a comprehensive threat model which identifies all the potential threats and vulnerabilities. In this work, we tried to revise the existing threat modeling efforts in the vehicular domain. Also, we proposed using a hybrid method called the Software, Asset, Vulnerability, Threat, and Attacker (SAVTA)-centric method to support security analysis for vehicular systems. SAVTA combines different existing threat modeling approaches to create a comprehensive and hybridized threat model. The model is used as an aid to construct general attack trees which illustrate attack vectors that threaten a particular vehicle asset and classify these attacks under different sub-trees.

Funder

European Commission

Publisher

MDPI AG

Subject

Information Systems

Reference78 articles.

1. Engineering Automotive Software

2. This car runs on code;Charette;IEEE Spectr.,2009

3. Secure in-vehicle communication;Wolf,2006

4. Intra-Vehicle Networks: A Review

5. Remote exploitation of an unaltered passenger vehicle;Miller;Black Hat USA,2015

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. REACT: Autonomous intrusion response system for intelligent vehicles;Computers & Security;2024-10

2. Creating a Security Enforcement Environment for a Vehicular Platform;2023 IEEE Conference on Standards for Communications and Networking (CSCN);2023-11-06

3. Cybersecurity for autonomous vehicles against malware attacks in smart-cities;Cluster Computing;2023-10-03

4. STRIDE threat model-based framework for assessing the vulnerabilities of modern vehicles;Computers & Security;2023-10

5. An Analysis of Various Cyber Threat Modeling;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3