Quantitative Evaluation of Dense Skeletons for Image Compression

Author:

Wang JieyingORCID,Terpstra MaartenORCID,Kosinka JiříORCID,Telea AlexandruORCID

Abstract

Skeletons are well-known descriptors used for analysis and processing of 2D binary images. Recently, dense skeletons have been proposed as an extension of classical skeletons as a dual encoding for 2D grayscale and color images. Yet, their encoding power, measured by the quality and size of the encoded image, and how these metrics depend on selected encoding parameters, has not been formally evaluated. In this paper, we fill this gap with two main contributions. First, we improve the encoding power of dense skeletons by effective layer selection heuristics, a refined skeleton pixel-chain encoding, and a postprocessing compression scheme. Secondly, we propose a benchmark to assess the encoding power of dense skeletons for a wide set of natural and synthetic color and grayscale images. We use this benchmark to derive optimal parameters for dense skeletons. Our method, called Compressing Dense Medial Descriptors (CDMD), achieves higher-compression ratios at similar quality to the well-known JPEG technique and, thereby, shows that skeletons can be an interesting option for lossy image encoding.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Information Systems

Reference57 articles.

1. Survey of image-based representations and compression techniques

2. The JPEG still picture compression standard

3. Machine Vision: Theory, Algorithms, Practicalities;Davies,2004

4. Medial Representations: Mathematics, Algorithms and Applications;Siddiqi,2008

5. A survey on skeletonization algorithms and their applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spline-Based Dense Medial Descriptors for Image Simplification Using Saliency Maps;Communications in Computer and Information Science;2023

2. Interactive image manipulation using morphological trees and spline-based skeletons;Computers & Graphics;2022-11

3. Spline-Based Dense Medial Descriptors for Lossy Image Compression;Journal of Imaging;2021-08-19

4. Spline-based medial axis transform representation of binary images;Computers & Graphics;2021-08

5. Focus-and-Context Skeleton-based Image Simplification using Saliency Maps;Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3