A Dynamic Bayesian Network Structure for Joint Diagnostics and Prognostics of Complex Engineering Systems

Author:

Lewis Austin D.ORCID,Groth Katrina M.

Abstract

Dynamic Bayesian networks (DBNs) represent complex time-dependent causal relationships through the use of conditional probabilities and directed acyclic graph models. DBNs enable the forward and backward inference of system states, diagnosing current system health, and forecasting future system prognosis within the same modeling framework. As a result, there has been growing interest in using DBNs for reliability engineering problems and applications in risk assessment. However, there are open questions about how they can be used to support diagnostics and prognostic health monitoring of a complex engineering system (CES), e.g., power plants, processing facilities and maritime vessels. These systems’ tightly integrated human, hardware, and software components and dynamic operational environments have previously been difficult to model. As part of the growing literature advancing the understanding of how DBNs can be used to improve the risk assessments and health monitoring of CESs, this paper shows the prognostic and diagnostic inference capabilities that are possible to encapsulate within a single DBN model. Using simulated accident sequence data from a model sodium fast nuclear reactor as a case study, a DBN is designed, quantified, and verified based on evidence associated with a transient overpower. The results indicate that a joint prognostic and diagnostic model that is responsive to new system evidence can be generated from operating data to represent CES health. Such a model can therefore serve as another training tool for CES operators to better prepare for accident scenarios.

Funder

U.S. Nuclear Regulatory Commission

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3