Adding Edges for Maximizing Weighted Reachability

Author:

Corò FedericoORCID,D'Angelo Gianlorenzo,Pinotti Cristina M.

Abstract

In this paper, we consider the problem of improving the reachability of a graph. We approach the problem from a graph augmentation perspective, in which a limited set size of edges is added to the graph to increase the overall number of reachable nodes. We call this new problem the Maximum Connectivity Improvement (MCI) problem. We first show that, for the purpose of solve solving MCI, we can focus on Directed Acyclic Graphs (DAG) only. We show that approximating the MCI problem on DAG to within any constant factor greater than 1 − 1 / e is NP -hard even if we restrict to graphs with a single source or a single sink, and the problem remains NP -complete if we further restrict to unitary weights. Finally, this paper presents a dynamic programming algorithm for the MCI problem on trees with a single source that produces optimal solutions in polynomial time. Then, we propose two polynomial-time greedy algorithms that guarantee ( 1 − 1 / e ) -approximation ratio on DAGs with a single source, a single sink or two sources.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Truss Maximization on Large Graphs: A Minimum Cut Approach;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Joint Connection and Content Embedding for Link Prediction in Social Networks;2021 IEEE Global Communications Conference (GLOBECOM);2021-12

3. Budget-constrained Truss Maximization over Large Graphs;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

4. Composite Technology Challenge System for Optimization in 5G Communications;SN Computer Science;2020-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3