Study on the Influence of EGR on the Combustion Performance of Biofuel Diesel at Different Ambient Simulated Pressures

Author:

Tan Zefei,Wang Jun,Chen Wengang,Shen Lizhong,Bi Yuhua

Abstract

In order to explore the influence of EGR at different altitudes on the performance of biofuel diesel engines, a comparative experimental study is conducted with the biodiesel–ethanol–diesel B15E5 (biodiesel with 15% volume fraction, ethanol with 5% volume fraction and diesel with 80% volume fraction) mixed fuel at different EGR rate and different atmospheric pressure. The experimental results show that diesel engine power performance and economy goes up with the increase of atmospheric pressure, and it decreases with the increase of EGR rate. At 2200 rpm, the improvement range of medium and high diesel engine load is 1.5–6.8%, and that of 1800 rpm is 2.8–11.7%. At the same atmospheric pressure, with the increase of EGR rate, the power and economy turn worse. The peak combustion pressure and heat release rate both increased with the increase of the atmospheric pressure at full load. At the same atmospheric pressure, peak combustion pressure and peak heat release rate fall with the increase of EGR rate. At part load, firstly, smoke emissions fall with the increase of the load and then rise. As the atmospheric pressure goes up, the smoke emissions show a downward trend, with a decline of 6.6–40%, while the NOx emissions show a rising trend, with an increase of 1.2–8.5%. At the same atmospheric pressure, the smoke emission increase with the increase of EGR rate by 9–12.5%, and the NOx emissions increase with the decrease of EGR rate by 2.5–6.8%. The HC and CO Emissions decrease with the increase of atmospheric pressure. HC emission decreases by 9.3–19.1%, and CO emission decreases by 2.9–16.6%. At the same atmospheric pressure, the HC emission decreases with the increase of the EGR rate by 3.3–4.5% at medium and high loads, and the CO emission increases with the EGR rate by 3.1–4.5%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3