Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata

Author:

Auclair Joelle,Gagné FrançoisORCID

Abstract

Plastics pervade our environment and potentially release important quantities of plastic nanoparticles (NPs) from degradation in the environment. The purpose of this study was to examine the crowding effects of polystyrene NPs on lactate dehydrogenase (LDH) in vitro and following exposure to Hydra attenuata. First, LDH activity was measured in vitro in the presence of filamentous (F-)actin and NPs (50 and 100 nm diameter) to determine changes in viscosity and the fractal kinetics of LDH. The fractal dimension (fD) was also determined using the rescaled range analysis procedure. Secondly, these changes were examined in hydra exposed to NPs for 96h to concentrations of NPs. The data revealed that the addition of F-actin increased the rate of LDH at low substrate (pyruvate) concentrations compared to LDH alone with a gradual decrease in the rate with the addition of pyruvate, which is characteristic of the fractal behavior of enzymes in crowded environments. The addition of 50 and 100 nm NPs also produced these changes, which suggest that NPs could change the space properties of the LDH reaction. The fD was reduced to 0.85 and 0.91 with 50 and 100 nm NPs compared to 1.093 with LDH alone. Decrease in the fD was related with increased amplitudes and frequency in viscosity waves in the reaction media. Exposure of hydra to NPs confirmed the increase in LDH activity and the fD was significantly correlated with LDH activity (r = −0.5). Correction of LDH activity (residuals) still revealed an increase in LDH activity in hydra suggesting increased anaerobic metabolism by NPs. In conclusion, the presence of NPs in the intracellular space decreased the fD, which could influence LDH activity in organisms exposed to NPs.

Publisher

MDPI AG

Subject

Pollution,Pharmacology,Toxicology

Reference26 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3