Kinetics of Precipitation Processes at Non-Zero Input Fluxes of Segregating Particles

Author:

Schmelzer Jürn W. P.12ORCID,Tropin Timur V.3ORCID,Abyzov Alexander S.4ORCID

Affiliation:

1. Institut für Physik der Universität Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany

2. Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany

3. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Russia

4. National Science Center Kharkov Institute of Physics and Technology, Akademicheskaya Street 1, 61108 Kharkov, Ukraine

Abstract

We consider the process of formation and growth of clusters of a new phase in segregation processes in solid or liquid solutions in an open system when segregating particles are added continuously to it with a given rate of input fluxes, Φ. As shown here, the value of the input flux significantly affects the number of supercritical clusters formed, their growth kinetics, and, in particular, the coarsening behavior in the late stages of the process. The detailed specification of the respective dependencies is the aim of the present analysis, which combines numerical computations with an analytical treatment of the obtained results. In particular, a treatment of the coarsening kinetics is developed, allowing a description of the development of the number of clusters and their average sizes in the late stages of the segregation processes in open systems, which goes beyond the scope of the classical Lifshitz, Slezov and Wagner theory. As is also shown, in its basic ingredients, this approach supplies us with a general tool for the theoretical description of Ostwald ripening in open systems, or systems where the boundary conditions, like temperature or pressure, vary with time. Having this method at one’s disposal supplies us with the possibility that conditions can be theoretically tested, leading to cluster size distributions that are most appropriate for desired applications.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On modeling of the kinetics of aggregation in low-polar C60 solutions;Fullerenes, Nanotubes and Carbon Nanostructures;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3