Abstract
Epilepsy is one of the most ordinary neuropathic illnesses, and electroencephalogram (EEG) is the essential method for recording various brain rhythm activities due to its high temporal resolution. The conditional entropy of ordinal patterns (CEOP) is known to be fast and easy to implement, which can effectively measure the irregularity of the physiological signals. The present work aims to apply the CEOP to analyze the complexity characteristics of the EEG signals and recognize the epilepsy EEG signals. We discuss the parameter selection and the performance analysis of the CEOP based on the neural mass model. The CEOP is applied to the real EEG database of Bonn epilepsy for identification. The results show that the CEOP is an excellent metrics for the analysis and recognition of epileptic EEG signals. The differences of the CEOP in normal and epileptic brain states suggest that the CEOP could be a judgment tool for the diagnosis of the epileptic seizure.
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献