Decision Trees for Binary Subword-Closed Languages

Author:

Moshkov Mikhail1ORCID

Affiliation:

1. Computer, Electrical and Mathematical Sciences & Engineering Division and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

In this paper, we study arbitrary subword-closed languages over the alphabet {0,1} (binary subword-closed languages). For the set of words L(n) of the length n belonging to a binary subword-closed language L, we investigate the depth of the decision trees solving the recognition and the membership problems deterministically and nondeterministically. In the case of the recognition problem, for a given word from L(n), we should recognize it using queries, each of which, for some i∈{1,…,n}, returns the ith letter of the word. In the case of the membership problem, for a given word over the alphabet {0,1} of the length n, we should recognize if it belongs to the set L(n) using the same queries. With the growth of n, the minimum depth of the decision trees solving the problem of recognition deterministically is either bounded from above by a constant or grows as a logarithm, or linearly. For other types of trees and problems (decision trees solving the problem of recognition nondeterministically and decision trees solving the membership problem deterministically and nondeterministically), with the growth of n, the minimum depth of the decision trees is either bounded from above by a constant or grows linearly. We study the joint behavior of the minimum depths of the considered four types of decision trees and describe five complexity classes of binary subword-closed languages.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference17 articles.

1. Deciding Atomicity of Subword-Closed Languages;Diekert;Lecture Notes in Computer Science, Proceedings of the Developments in Language Theory-26th International Conference, DLT 2022, Tampa, FL, USA, 9–13 May 2022, Proceedings,2022

2. Quotient Complexity of Closed Languages;Brzozowski;Theory Comput. Syst.,2014

3. On Free Monoids Partially Ordered by Embedding;Haines;J. Comb. Theory,1969

4. Power, positive closure, and quotients on convex languages;Theor. Comput. Sci.,2021

5. On the State Complexity of Scattered Substrings and Superstrings;Okhotin;Fundam. Inform.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3