Anisotropic SpiralNet for 3D Shape Completion and Denoising

Author:

Kim Seong UkORCID,Roh Jihyun,Im HyeonseungORCID,Kim JongminORCID

Abstract

Three-dimensional mesh post-processing is an important task because low-precision hardware and a poor capture environment will inevitably lead to unordered point clouds with unwanted noise and holes that should be suitably corrected while preserving the original shapes and details. Although many 3D mesh data-processing approaches have been proposed over several decades, the resulting 3D mesh often has artifacts that must be removed and loses important original details that should otherwise be maintained. To address these issues, we propose a novel 3D mesh completion and denoising system with a deep learning framework that reconstructs a high-quality mesh structure from input mesh data with several holes and various types of noise. We build upon SpiralNet by using a variational deep autoencoder with anisotropic filters that apply different convolutional filters to each vertex of the 3D mesh. Experimental results show that the proposed method enhances the reconstruction quality and achieves better accuracy compared to previous neural network systems.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Motion-Induced Phase Error Compensation Using Three-Stream Neural Networks

2. A Methodological Proposal for the Comparison of 3D Photogrammetric Models;Di Filippo;Proceedings of the Design Tools and Methods in Industrial Engineering II,2021

3. Rheometry for Concrete 3D Printing: A Review and an Experimental Comparison

4. CGAL User and Reference Manual,2022

5. OpenMesh—A Generic and Efficient Polygon Mesh Data Structurehttps://www.graphics.rwth-aachen.de/software/openmesh/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3