Abstract
Transportation Mode Detection (TMD) is an important task for the Intelligent Transportation System (ITS) and Lifelog. TMD, using smartphone built-in sensors, can be a low-cost and effective solution. In recent years, many studies have focused on TMD, yet they support a limited number of modes and do not consider similar transportation modes and holding places, limiting further applications. In this paper, we propose a new network framework to realize TMD, which combines structural and spatial interaction features, and considers the weights of multiple sensors’ contributions, enabling the recognition of eight transportation modes with four similar transportation modes and four holding places. First, raw data is segmented and transformed into a spectrum image and then ResNet and Vision Transformers (Vit) are used to extract structural and spatial interaction features, respectively. To consider the contribution of different sensors, the weights of each sensor are recalibrated using an ECA module. Finally, Multi-Layer Perceptron (MLP) is introduced to fuse these two different kinds of features. The performance of the proposed method is evaluated on the public Sussex-Huawei Locomotion-Transportation (SHL) dataset, and is found to outperform the baselines by at least 10%.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献