Prediction of Paratope–Epitope Pairs Using Convolutional Neural Networks

Author:

Li Dong12ORCID,Pucci Fabrizio12,Rooman Marianne12

Affiliation:

1. Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium

2. Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium

Abstract

Antibodies play a central role in the adaptive immune response of vertebrates through the specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a wide range of biotechnological and medical applications, such as in disease diagnosis and treatment. However, there are currently no reliable methods for predicting the antibodies that recognize a specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool for predicting the binding probability of paratope–epitope pairs, where the epitope and paratope patches were simplified into interacting two-dimensional patches, which were colored according to the values of selected features, and pixelated. The specific recognition of an epitope image by a paratope image was achieved by using a convolutional neural network-based model, which was trained on a set of two-dimensional paratope–epitope images derived from experimental structures of antibody–antigen complexes. Our method achieves good performances in terms of cross-validation with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including extensive screening of large libraries to identify paratope candidates that bind to a selected epitope, and rescoring and refining antibody–antigen docking poses.

Funder

FNRS-Belgian Fund

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3