Genome-Wide Epistatic Network Analyses of Semantic Fluency in Older Adults

Author:

Tan Qihua12ORCID,Li Weilong1ORCID,Nygaard Marianne1ORCID,An Ping3,Feitosa Mary3ORCID,Wojczynski Mary K.3,Zmuda Joseph4,Arbeev Konstantin5ORCID,Ukraintseva Svetlana5ORCID,Yashin Anatoliy5,Christensen Kaare1ORCID,Mengel-From Jonas1ORCID

Affiliation:

1. Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, 5230 Odense, Denmark

2. Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark

3. Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA

4. Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA

5. Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NA 27708, USA

Abstract

Semantic fluency impairment has been attributed to a wide range of neurocognitive and psychiatric conditions, especially in the older population. Moderate heritability estimates on semantic fluency were obtained from both twin and family-based studies suggesting genetic contributions to the observed variation across individuals. Currently, effort in identifying the genetic variants underlying the heritability estimates for this complex trait remains scarce. Using the semantic fluency scale and genome-wide SNP genotype data from the Long Life Family Study (LLFS), we performed a genome-wide association study (GWAS) and epistasis network analysis on semantic fluency in 2289 individuals aged over 60 years from the American LLFS cohorts and replicated the findings in 1129 individuals aged over 50 years from the Danish LLFS cohort. In the GWAS, two SNPs with genome-wide significance (rs3749683, p = 2.52 × 10−8; rs880179, p = 4.83 × 10−8) mapped to the CMYAS gene on chromosome 5 were detected. The epistasis network analysis identified five modules as significant (4.16 × 10−5 < p < 7.35 × 10−3), of which two were replicated (p < 3.10 × 10−3). These two modules revealed significant enrichment of tissue-specific gene expression in brain tissues and high enrichment of GWAS catalog traits, e.g., obesity-related traits, blood pressure, chronotype, sleep duration, and brain structure, that have been reported to associate with verbal performance in epidemiological studies. Our results suggest high tissue specificity of genetic regulation of gene expression in brain tissues with epistatic SNP networks functioning jointly in modifying individual verbal ability and cognitive performance.

Funder

the National Institute on Aging of the National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3