Characterization of Porous β-Type Tricalcium Phosphate Ceramics Formed via Physical Foaming with Freeze-Drying

Author:

Hashimoto Kazuaki1ORCID,Oikawa Hiroto1,Shibata Hirobumi1

Affiliation:

1. Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Chiba, Japan

Abstract

Porous β-tricalcium phosphate (Ca3(PO4)2; β-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing β-TCP slurries above a liquid nitrogen surface at −180 °C with subsequent immersion in liquid nitrogen at −196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the β-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.

Publisher

MDPI AG

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3