Leveraging the Fragment Molecular Orbital and MM-GBSA Methods in Virtual Screening for the Discovery of Novel Non-Covalent Inhibitors Targeting the TEAD Lipid Binding Pocket

Author:

Kim Jongwan12ORCID,Jin Haiyan13ORCID,Kim Jinhyuk34ORCID,Cho Seon Yeon4,Moon Sungho4ORCID,Wang Jianmin3ORCID,Mao Jiashun3,No Kyoung Tai1345ORCID

Affiliation:

1. Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea

2. Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

3. The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea

4. Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea

5. Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea

Abstract

The Hippo pathway controls organ size and homeostasis and is linked to numerous diseases, including cancer. The transcriptional enhanced associate domain (TEAD) family of transcription factors acts as a receptor for downstream effectors, namely yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which binds to various transcription factors and is essential for stimulated gene transcription. YAP/TAZ-TEAD facilitates the upregulation of multiple genes involved in evolutionary cell proliferation and survival. TEAD1–4 overexpression has been observed in different cancers in various tissues, making TEAD an attractive target for drug development. The central drug-accessible pocket of TEAD is crucial because it undergoes a post-translational modification called auto-palmitoylation. Crystal structures of the C-terminal TEAD complex with small molecules are available in the Protein Data Bank, aiding structure-based drug design. In this study, we utilized the fragment molecular orbital (FMO) method, molecular dynamics (MD) simulations, shape-based screening, and molecular mechanics–generalized Born surface area (MM-GBSA) calculations for virtual screening, and we identified a novel non-covalent inhibitor—BC-001—with IC50 = 3.7 μM in a reporter assay. Subsequently, we optimized several analogs of BC-001 and found that the optimized compound BC-011 exhibited an IC50 of 72.43 nM. These findings can be used to design effective TEAD modulators with anticancer therapeutic implications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3