Challenges of Robust RNAi-Mediated Gene Silencing in Aedes Mosquitoes

Author:

Figueiredo Prates Lucas Henrique1ORCID,Fiebig Jakob1,Schlosser Henrik1ORCID,Liapi Eleni2ORCID,Rehling Tanja1ORCID,Lutrat Célia3ORCID,Bouyer Jeremy34ORCID,Sun Qiang5,Wen Han5ORCID,Xi Zhiyong5ORCID,Schetelig Marc F.1ORCID,Häcker Irina1ORCID

Affiliation:

1. Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany

2. Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece

3. ASTRE, CIRAD, 34398 Montpellier, France

4. ASTRE, CIRAD, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France

5. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA

Abstract

In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi’s potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3