Active-Learning Reliability Analysis of Automotive Structures Based on Multi-Software Interaction in the MATLAB Environment

Author:

Wang Junfeng12ORCID,Chen Jiqing12,Zhang Yuqi12,Lan Fengchong12,Zhou Yunjiao12

Affiliation:

1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China

2. Guangdong Provincial Key Laboratory of Automotive Engineering, Guangzhou 510641, China

Abstract

The reliability design of automotive structures is characterized by numerous variables and implicit responses. The traditional design of experiments for metamodel construction often requires manual adjustment of model parameters and extensive finite element analysis, resulting in inefficiency. To address these issues, active learning-based reliability methods are effective solutions. This study proposes an active-learning reliability analysis method based on multi-software interaction. Firstly, through secondary development of different software and MATLAB (version 2023a)’s batch processing function, a multi-software interactive reliability analysis method is developed, achieving automation in structural parametric design, finite element analysis and post-processing. This provides a more efficient and convenient platform for the implementation of active learning. Secondly, the polynomial chaos–kriging (PCK) active-learning method is introduced, combining the advantages of polynomial chaos expansion (PCE) and kriging. The PCK method captures the global behavior of the computational model using regression-based PCE and local variations using interpolation-based kriging. This metamodel is constructed with fewer training samples, effectively replacing the real multi-dimensional implicit response relations, thereby improving the efficiency of modeling and reliability analysis. Finally, the specific implementation scheme is detailed. The accuracy and efficiency of the proposed method are verified by a reliability engineering example of body-in-white bending and torsional stiffness.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou City of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3