CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment

Author:

Chen Huizhen12,Liu Shuning2,Liu Rongkai2,Shi Heyuan1ORCID,Hu Chao1,Shi Ronghua1

Affiliation:

1. School of Electronic Information, Central South University, Changsha 410083, China

2. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

The carrier is one of the key components used in wastewater treatment, which can enrich microorganisms at the surface to improve the amount of biomass in the reactor. Monitoring and adjusting the number of carriers is a key component for the processing efficiency of the ecosystem, which directly impacts wastewater treatment effectiveness. Therefore, carrier detection in wastewater microscopic images is important in the urban domestic wastewater treatment process. The current process to detect carriers is operator-dependent, which is time-consuming and expensive. Though a number of general object or cell detection approaches are used for this task, their effectiveness is limited because the carrier and background are similar and there are defective carriers as background noise. In this paper, we propose CarrDet, the first deep learning-based carrier detection framework for wastewater treatment. CarrDet uses a carrier feature block attention module and a symmetry-based defective carrier detection module to detect carriers with shallow edges and reduce false positives caused by defective carriers, respectively. To evaluate CarrDet, we propose a carrier dataset of 600 wastewater microscopic images, manually annotated by experts. Compared with state-of-the-art object detection methods, CarrDet shows superior performance in terms of both accuracy and speed, achieving a mAP of 94.32 and an IPS of 4.93. We employed CarrDet to confirm the detection results of 621 wastewater microscopic images, which were detected by inexperienced engineers who are new to the field. CarrDet added 398 unrecognized carriers with shallow edges and corrected 273 incorrect manual annotations in 5 min, which emphasizes the efficiency and practicality of CarrDet for practical business scenarios.

Funder

Ministry of Education Industry-University Cooperation Collaborative Education Project

Changsha Science and Technology Key Project

National Natural Science Foundation of China

Hunan Natural Science Foundation

Hunan 14th Five-Year Plan Educational Science Research Project

Hunan Social Science Foundation

High Performance Computing Center of Central South University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3