Open DGML: Intrusion Detection Based on Open-Domain Generation Meta-Learning

Author:

Jiang Kaida1ORCID,Zou Futai1ORCID,Huang Hongjun1,Zheng Liwen1,Zhai Haochen1

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Network security is crucial for national infrastructure, but the increasing number of network intrusions poses significant challenges. To address this issue, we propose Open DGML, a framework based on open-domain generalization meta-learning for intrusion detection. Our approach incorporates flow imaging, data augmentation, and open-domain generalization meta-learning algorithms. Experimental results on the ISCX2012, NDSec-1, CICIDS2017, and CICIDS2018 datasets demonstrate the effectiveness of Open DGML. Compared to state-of-the-art models (HAST-IDS, CLAIRE, FC-Net), Open DGML achieves higher accuracy and detection rates. In closed-domain settings, it achieves an average accuracy of 96.52% and a detection rate of 97.04%. In open-domain settings, it achieves an average accuracy of 68.73% and a detection rate of 61.49%. These results highlight the superior performance of Open DGML, particularly in open-domain scenarios, for effective identification of various network attacks.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3