Roughness Evolution of Granite Flat Fracture Surfaces during Sliding Processes

Author:

Yang Hengtao1ORCID,Bai Bing2ORCID,Lin Hang1ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

Roughness is an essential factor affecting the shear process of discontinuous surfaces, and the evolution of roughness is closely related to the mechanical behavior of discontinuous surfaces. In this paper, with the help of granite specimens, a direct shear test was carried out on flat fracture surfaces obtained by sawing in order to study the evolution of roughness with shear slip. During the tests, the roughness evolution was evaluated using the arithmetic mean, root mean square and power spectral density of the roughness. The variation in these parameters all indicate that the friction surface with large slip tends to be rougher, at least under the loading conditions in this paper. And the increase in normal force will enhance this process, while the loading rate seems to have little effect on the roughness evolution. Finally, the analysis of the power spectral density shows that the roughness evolution in the spatial frequency of the profile line is mainly reflected in the middle– and low–frequency part, while the high–frequency part corresponding to the microscopic roughness body does not change much throughout the shear process.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Hunan provincial key research and development Program

Guizhou Provincial Major Scientific and Technological Program

Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region, Ministry of Natural Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3