A New Class of Edge Filter Based on a Cross-correlation-like Equation Derived from Fractional Calculus Principles

Author:

Gonzalez-Lee Mario1,Vazquez-Leal Hector2ORCID,Garcia-Martinez Jose R.1ORCID,Pale-Ramon Eli G.3,Morales-Mendoza Luis J.1ORCID,Nakano-Miyatake Mariko4ORCID,Perez-Meana Hector4ORCID

Affiliation:

1. Facultad de Ingeniería en Electrónica y Comunicaciones, Universidad Veracruzana, Av. Venustiano Carranza S/N, Poza Rica Veracruz 93390, Mexico

2. Facultad de Instrumentacion Electronica, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N, Xalapa 91000, Mexico

3. Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico

4. Seccion de Estudios de Posgrado e Investigacion, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Del. Coyoacan, Ciudad de Mexico 04440, Mexico

Abstract

In this paper, we propose a new sliding window edge-oriented filter that computes the output pixels using a cross-correlation-like equation derived from the principles of fractional calculus (FC); thus, we call it the “fractional cross-correlation filter” (FCCF). We assessed the performance of this filter utilizing exclusively edge-preservation-oriented metrics such as the gradient conduction mean square error (GCMSE), the edge-based structural similarity (EBSSIM), and the multi-scale structural similarity (MS-SSIM); we conducted a statistical assessment of the performance of the filter based on those metrics by using the Berkeley segmentation dataset benchmark as a test corpus. Experimental data reveal that our approach achieves higher performance compared to conventional edge filters for all the metrics considered in this study. This is supported by the statistical analysis we carried out; specifically, the FCCF demonstrates a consistent enhancement in edge detection. We also conducted additional experiments for determining the main filter parameters, which we found to be optimal for a broad spectrum of images. The results underscore the FCCF’s potential to make significant contributions to the advancement of image processing techniques since many practical applications such as medical imaging, image enhancement, and computer vision rely heavily on edge detection filters.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3