Integrated Plug High-Strength Geocell Reinforcement in Foundation Design for Square Footing

Author:

Hou Juan123ORCID,He Xin1,Lu Shen1,Ma Yanxia2

Affiliation:

1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

2. School of Civil Engineering, Qinghai University, Xining 810016, China

3. School of Civil Engineering, University of Virginia, Charlottesville, VA 22904, USA

Abstract

This paper develops an analytical model to calculate the ultimate bearing capacity of the integrated plug high-strength geocell (IPGC)-reinforced foundation under a square footing. The high strength and stiffness of the geocell wall and the typical failure of the integrated plug-in joint tearing were considered. The ultimate bearing capacity of the IPGC-reinforced foundation was calculated in two separate parts. The ultimate bearing capacity of an unreinforced foundation was calculated using the modified Terzaghi equation. The increased bearing capacity of the IPGC was calculated as the function of the tearing force of the geocell wall, the height and the diameter of a geocell, the empirical static earth pressure coefficient, and the vertical additional stress coefficient under uniformly distributed rectangular loading. The results showed that the maximum error between the experimental and the theoretical results is less than 18%. The ultimate bearing capacity of IPGC-reinforced foundations decreases with larger geocell diameters. When the diameter of the geocell exceeds 1.8 times the foundation width, the confinement effect of IPGC becomes negligible. The findings of this study offer a robust analytical equation for predicting IPGC-reinforced foundations, along with valuable insights into the efficacy of IPGC reinforcement in enhancing foundation stability.

Funder

National Natural Science Foundation of China

2023 Basic Research Program of Qinghai Province

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3