Multi-Object Tracking with Grayscale Spatial-Temporal Features

Author:

Xu Longxiang1,Wu Guosheng1

Affiliation:

1. School of Electronic Information, Qingdao University, Qingdao 266071, China

Abstract

In recent multiple object tracking (MOT) research, there have not been many traditional methods and optimizations for matching. Most of today’s popular tracking methods are implemented using deep learning. But many monitoring devices do not have high computing power, so real-time tracking via neural networks is difficult. Furthermore, matching takes less time than detection and embedding, but it still takes some time, especially for many targets in a scene. Therefore, in order to solve these problems, we propose a new method by using grayscale maps to obtain spatial-temporal features based on traditional methods. Using this method allows us to directly find the position and region in previous frames of the target and significantly reduce the number of IDs that the target needs to match. At the same time, compared to some end-to-end paradigms, our method can quickly obtain spatial-temporal features using traditional methods, which reduces some calculations. Further, we joined embedding and matching to further reduce the time spent on tracking. Our method reduces the calculations in feature extraction and reduces unnecessary matching in the matching stage. Our method was evaluated on benchmark dataset MOT16, and it achieved great performance; the tracking accuracy metric MOTA reached 46.7%. The tracking FPS reached 17.6, and it ran only on a CPU without GPU acceleration.

Publisher

MDPI AG

Reference32 articles.

1. Redmon, J., Divvala, S., Divvala, R., and Farhadi, A. (July, January 26). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

2. Ren, S., He, K., Girshick, R., and Sun, J. (2015, January 7–12). Faster r-cnn: Towards real-time object detection with region proposal networks. Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA.

3. Liu, W., Anguelov, D., and Erhan, D. (2016, January 11–14). SSD: Single shot multibox detector. Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherland.

4. Bewley, A., Ge, Z., and Ott, L. (2016, January 25–28). Simple online and realtime tracking. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA.

5. Wang, Z., Zheng, L., and Liu, Y. (2020, January 23–28). Towards real-time multi-object tracking. Proceedings of the European Conference on Computer Vision, Virtual.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3