Bond Strength Evaluation of FRP–Concrete Interfaces Affected by Hygrothermal and Salt Attack Using Improved Meta-Learning Neural Network

Author:

Wang Yi1,Ye Ning1,Liu Siyuan1,Zhang Zhengqin1,Hu Yihan1,Wei Anni1,Wang Haoyu2

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. Department of Civil Engineering, The University of Tokyo, Tokyo 113-8654, Japan

Abstract

Fiber-reinforced polymer (FRP) laminates are popular in the strengthening of concrete structures, but the durability of the strengthened structures is of great concern. Due to the susceptibility of the epoxy resin used for bonding and the deterioration of materials, the bond performance of the FRP–concrete interface could be degraded due to environmental exposure. This paper aimed to establish a data-driven method for bond strength prediction using existing test results. Therefore, a method composed of a Back Prorogation Net (BPNN) and Meta-learning Net was proposed, which can be used to solve the implicit regression problems in few-shot learning and can obtain the deteriorated bond strength and the impact weight of each parameter. First, the pretraining database Meta1, a database of material strength degradation, was established from the existing results and used in the meta-learning network. Then, the database Meta2 was built and used in the meta-learning network for model fine-tuning. Finally, combining all prior knowledge, not only the degradation of the FRP–concrete bond’s strength was predicted, but the respective weights of the environment parameters were also obtained. This method can accurately predict the degradation of the bond performance of FRP–concrete interfaces in complex environments, thus facilitating the further assessment of the remaining service life of FRP-reinforced structures.

Funder

Central South University Innovation-Driven Research Programme,China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3