Heat Transfer Performance and Operation Scheme of the Deeply Buried Pipe Energy Pile Group

Author:

Tian Yuhan1,Chen Zhi1,Yuan Jianghuai1,Mao Anqi2

Affiliation:

1. School of Civil Engineering and Environment, Hubei University of Technology, Wuhan 430068, China

2. China Academy of Building Research, Beijing 100013, China

Abstract

This paper describes a study on the heat transfer properties of the deeply buried pipeline energy pile group, which is an efficient and convenient geothermal development technology. Through in situ experiments and a simulation algorithm, the research investigated the heat transmission characteristics of the deeply buried pipe energy pile group and optimized different intermittent operation schemes. The findings suggest that prolonged operation of the pile cluster intensifies heat buildup within the pile foundation, thereby adversely affecting the system’s overall heat exchange efficiency. Employing an intermittent operating mode can alleviate this heat accumulation phenomenon, thereby promoting sustained heat exchange performance of the piles over time. To evaluate the comprehensive thermal interaction and energy efficiency ratio of the energy pile heat exchange system, various intermittent operation strategies were compared in the study. Among them, the intermittent operational scheme with a ratio of n = 5 was found to be optimal, with the total average heat transfer rate of the pile set only 0.51% lower than that of the continuous operational mode, but the overall energy efficiency ratio improved by 19.6%. The intermittent operational mode proposed in this study can achieve the goal of saving energy and efficiently extracting geothermal resources, providing theoretical guidance for the extraction and utilization of subsurface geothermal power by energy piles.

Funder

Key Research and Development Program of Hubei Province

Technology Innovation Project of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3