Design of a 1 × 3 Power Splitter Based on Multimode Interference in a Parabolic-Type Slot-Waveguide Structure

Author:

Liu Shuo1,Liu Baichao1,Lv Huanlin2,Liang Yanfeng1,Liu Fangxu1,Wang Haoyu1,Cong Yang1,Li Xuanchen1,Guo Qingxiao1

Affiliation:

1. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China

2. Department of General Education, Dalian Polytechnic University, Dalian 116034, China

Abstract

Multimode interference (MMI) couplers based on silicon slot-waveguide structures have received widespread attention in recent years. The key issues that need to be addressed are the size and loss of such devices. This study introduces a 1 × 3 silicon-based slot-waveguide multimode interference power splitter. The device uses a gallium-nitride slot-waveguide structure to reduce the length of the coupling region and decrease additional losses. To reduce the width of the coupling region, the multimode interference coupling area is designed with a parabolic-shaped structure. The introduction of a tapered structure between the input/output waveguides and the coupling region improves additional losses and non-uniformity. Furthermore, we conducted an analysis of the fabrication tolerances of the coupling region. In this paper, we use mode solution to simulate the design of the device in the 1550 nm optical wavelength range. The eigenmode expansion method is used to simulate and optimize the parameters of the device. The device is simulated using the eigenmode expansion solver. The simulation results show that the total length of the coupling region for the device is only 4 μm. The normalized transmission of the device is 0.992, and its excess loss and imbalance are 0.036 dB and 0.003 dB, respectively. The proposed power splitter can be applied to integrated optical circuit design, optical sensing, and optical power measurement.

Funder

Liaoning Province Education Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3