A Benchmark for Morphological Segmentation in Uyghur and Kazakh

Author:

Abudouwaili Gulinigeer12,Ruzmamat Sirajahmat12,Abiderexiti Kahaerjiang12,Wu Binghong12,Wumaier Aishan12ORCID

Affiliation:

1. School of Computer Science and Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China

2. Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, No. 777 Huarui Street, Urumqi 830017, China

Abstract

Morphological segmentation and stemming are foundational tasks in natural language processing. They have become effective ways to alleviate data sparsity in agglutinative languages because of the nature of agglutinative language word formation. Uyghur and Kazakh, as typical agglutinative languages, have made significant progress in morphological segmentation and stemming in recent years. However, the evaluation metrics used in previous work are character-level based, which may not comprehensively reflect the performance of models in morphological segmentation or stemming. Moreover, existing methods avoid manual feature extraction, but the model’s ability to learn features is inadequate in complex scenarios, and the correlation between different features has not been considered. Consequently, these models lack representation in complex contexts, affecting their effective generalization in practical scenarios. To address these issues, this paper redefines the morphological-level evaluation metrics: F1-score and accuracy (ACC) for morphological segmentation and stemming tasks. In addition, two models are proposed for morpheme segmentation and stem extraction tasks: supervised model and unsupervised model. The supervised model learns character and contextual features simultaneously, then feature embeddings are input into a Transformer encoder to study the correlation between character and context embeddings. The last layer of the model uses a CRF or softmax layer to determine morphological boundaries. In unsupervised learning, an encoder–decoder structure introduces n-gram correlation assumptions and masked attention mechanisms, enhancing the correlation between characters within n-grams and reducing the impact of characters outside n-grams on boundaries. Finally, comprehensive comparative analyses of the performance of different models are conducted from various points of view. Experimental results demonstrate that: (1) The proposed evaluation method effectively reflects the differences in morphological segmentation and stemming for Uyghur and Kazakh; (2) Learning different features and their correlation can enhance the model’s generalization ability in complex contexts. The proposed models achieve state-of-the-art performance on Uyghur and Kazakh datasets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3