Determination of the Ground Reaction Curve for an Elasto-Plasto-Fractured Rock Mass

Author:

Kamiński Paweł1ORCID,Otto Aleksandra2,Dawidziuk Piotr2,Malinowski Leszek3,Stecuła Kinga4ORCID,Dyczko Artur3

Affiliation:

1. KOMAG Institute of Mining Technology, Pszczynska 37, 44-101 Gliwice, Poland

2. Przedsiębiorstwo Budowy Szybów SA, Hutnicza 5-9, 42-600 Tarnowskie Góry, Poland

3. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7a, 31-261 Krakow, Poland

4. Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

Polish National Standards for underground excavation support design outline the deformational pressure model for assessing loads acting on the support systems of deep underground excavations. They distinguish two different rock mass models, highlighting the pivotal role of the critical longitudinal strain of the rock mass in appropriate model selection. A comparison between the design method given by Polish Standards and the widely recognized convergence–confinement method, consisting of a ground reaction curve (GRC), longitudinal displacement profile (LDP), and support characteristics curve (SCC), reveals the advantages of the latter in capturing the three-dimensional nature of underground excavations. The following study presents a method for establishing a GRC curve for the elasto-plasto-fractured rock mass model, featured in Polish Standards, demonstrating its applicability through analyses of a typical circular roadway under varying rock mass conditions. Practical implications are discussed, including the design of yielding steel arches as the primary support system and the calculation of safety factors for both the support system and the surrounding rock mass, considered as a natural support component. Overall, the study contributes to a deeper understanding of the actions of rock masses in the vicinity of excavations located at great depths. Furthermore, it provides practical insights for engineering applications.

Publisher

MDPI AG

Reference39 articles.

1. Gałczyński, S. (1970). Geotechnika górnicza. Ćwiczenia Projektowe z Mechaniki Górotworu, Wydawnictwa Politechniki Wrocławskiej.

2. Hoek, E. (2007). Practical Rock Engineering [e-Book], Rocscience Inc.. Available online: https://www.rocscience.com/learning/hoeks-corner.

3. Time Dependent Deformations in Squeezing Tunnels;Barla;Int. J. Geoeng. Case Hist.,2010

4. Chudek, M., Głuch, P., and Szczepaniak, Z. (1991). Projektowanie i Wykonywanie Wyrobisk Komorowych, Wydawnictwo Politechniki Śląskiej. [2nd ed.].

5. Lwisa, E., and Arman, H. (2021). Time-dependent behaviour of rock materials. Engineering Geology, IntechOpen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3