The Effectiveness of UWB-Based Indoor Positioning Systems for the Navigation of Visually Impaired Individuals

Author:

Rosiak Maria1,Kawulok Mateusz1,Maćkowski Michał1ORCID

Affiliation:

1. Department of Distributed Systems and Informatic Devices, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

UWB has been in existence for several years, but it was only a few years ago that it transitioned from a specialized niche to more mainstream applications. Recent market data indicate a rapid increase in the popularity of UWB in consumer products, such as smartphones and smart home devices, as well as automotive and industrial real-time location systems. The challenge of achieving accurate positioning in indoor environments arises from various factors such as distance, location, beacon density, dynamic surroundings, and the density and type of obstacles. This research used MFi-certified UWB beacon chipsets and integrated them with a mobile application dedicated to iOS by implementing the near interaction accessory protocol. The analysis covers both static and dynamic cases. Thanks to the acquisition of measurements, two main candidates for indoor localization infrastructure were analyzed and compared in terms of accuracy, namely UWB and LIDAR, with the latter used as a reference system. The problem of achieving accurate positioning in various applications and environments was analyzed, and future solutions were proposed. The results show that the achieved accuracy is sufficient for tracking individuals and may serve as guidelines for achievable accuracy or may provide a basis for further research into a complex sensor fusion-based navigation system. This research provides several findings. Firstly, in dynamic conditions, LIDAR measurements showed higher accuracy than UWB beacons. Secondly, integrating data from multiple sensors could enhance localization accuracy in non-line-of-sight scenarios. Lastly, advancements in UWB technology may expand the availability of competitive hardware, facilitating a thorough evaluation of its accuracy and effectiveness in practical systems. These insights may be particularly useful in designing navigation systems for blind individuals in buildings.

Funder

Silesian University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3