A New AI Approach by Acquisition of Characteristics in Human Decision-Making Process

Author:

Zhou Yuan1ORCID,Khatibi Siamak1ORCID

Affiliation:

1. Department of Technology and Aesthetic, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

Abstract

Planning and decision making are closely interconnected processes that often occur in tandem, influence and informing each other. Planning usually precedes decision making in the chronological sequence, and it can be viewed as a strategy to make decisions. A comprehensive planning or decision strategy can facilitate effective decisions. Thus, understanding and learning human decision-making strategies has drawn intensive attention from the AI community. For example, applying planning algorithms into reinforcement leaning (RL) can simulate the consequence of different actions and select optimal decisions based on learned models, while inverse reinforcement learning (IRL) learns a reward function and policy from expert demonstration and applies them into new scenarios. Most of these methods work based on learning human decision strategies by using modeling of a Markovian decision-making process (MDP). In this paper, we argue that the property of MDP is not fit for human decision-making processes in the real-world and it is insufficient to capture human decision strategies. To tackle this challenge, we propose a new approach to identify the characteristics of human decision-making processes as a decision map, where the decision strategy is defined by the probability distribution of human decisions that are adaptive to the dynamic changes in the environment. The proposed approach was inspired by imitation learning (IL) but with fundamental differences: (a) Instead of aiming to learn an optimal policy based on expert’s demonstrations, we aimed to estimate the distribution of decisions of any group of people. (b) Instead of modeling the environment by an MDP, we used an ambiguity probability model to consider the uncertainty of each decision. (c) The participant trajectory was obtained by categorizing each decision of a participant to a certain cluster based on the commonness in the distribution of decisions. The result shows a feasible way to capture human long-term decision dependency, which provides a complement to the existing machine learning methods for understanding and learning human decision strategies.

Publisher

MDPI AG

Reference46 articles.

1. Daniel, K. (2011). Thinking, Fast and Slow, Macmillan.

2. Risk, uncertainty, and heuristics;Mousavi;J. Bus. Res.,2014

3. Gilovich, T., Griffin, D., and Kahneman, D. (2002). Heuristics and Biases: The Psychology of Intuitive Judgment, Cambridge University Press.

4. Bazerman, M.H., and Moore, D.A. (2012). Judgment in Managerial Decision Making, John Wiley & Sons.

5. Understanding the role of human intuition on reliance in human-AI decision-making with explanations;Chen;Proc. ACM Hum. Comput. Interact.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3