Few-Shot Steel Defect Detection Based on a Fine-Tuned Network with Serial Multi-Scale Attention

Author:

Liu Xiangpeng1ORCID,Jiao Lei1,Peng Yulin1ORCID,An Kang1ORCID,Wang Danning1,Lu Wei1ORCID,Han Jianjiao1ORCID

Affiliation:

1. College of Information, Mechanical & Electrical Engineering, Shanghai Normal University, 100 Haisi Road, Shanghai 201418, China

Abstract

Detecting defects on a steel surface is crucial for the quality enhancement of steel, but its effectiveness is impeded by the limited number of high-quality samples, diverse defect types, and the presence of interference factors such as dirt spots. Therefore, this article proposes a fine-tuned deep learning approach to overcome these obstacles in unstructured few-shot settings. Initially, to address steel surface defect complexities, we integrated a serial multi-scale attention mechanism, concatenating attention and spatial modules, to generate feature maps that contain both channel information and spatial information. Further, a pseudo-label semi-supervised learning algorithm (SSL) based on a variant of the locally linear embedding (LLE) algorithm was proposed, enhancing the generalization capability of the model through information from unlabeled data. Afterwards, the refined model was merged into a fine-tuned few-shot object detection network, which applied extensive base class samples for initial training and sparsed new class samples for fine-tuning. Finally, specialized datasets considering defect diversity and pixel scales were constructed and tested. Compared with conventional methods, our approach improved accuracy by 5.93% in 7-shot detection tasks, markedly reducing manual workload and signifying a leap forward for practical applications in steel defect detection.

Funder

National Natural Science Foundation of China

Pudong New Area Science & Technology Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3