Development of Dehydrogenation System for Liquid Organic Hydrogen Carrier with Enhanced Reaction Rate

Author:

Lee Juhan1ORCID,Usman Muhammad2,Park Sanghyoun1ORCID,Lee Sangyong1ORCID,Song Myung Ho1

Affiliation:

1. Department of Mechanical Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. SNAM Automobiles Industries Co., Jubail Industrial City 35744, Saudi Arabia

Abstract

Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic hydrogen carrier (LOHC) technology. The present study focused on increasing the speed of dehydrogenation, resulting in the proposal of a triple-loop dehydrogenation system comprising reaction, heating, and chilling loops. The reactor has a rotating cage containing a packed bed of catalyst pellets, which is designed to enhance both heat and mass transfer by helping to detach precipitated hydrogen bubbles from the catalyst surface. In addition, the centrifugal force aids in isolating the gas phase from the LOHC liquid. A dehydrogenation experiment was conducted using the reaction and chilling loops, which revealed that the average hydrogen production rate during the first hour was 52.6 LPM (liter per minute) from 26.3 L of perhydro-dibenzyl-toluene with 1.5 kg of 0.5 wt% Pt/Al2O3 catalyst. This was approximately 48% more than the value predicted with the reaction kinetics measured with a small-scale plug flow dehydrogenation reactor with less than 1.0 g of 5.0 wt% Pt/Al2O3 catalyst. The concept, construction methods, and results of the preliminary gas infiltration, flow visualization, and reactor pumping experiments are also described in this paper.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Dongguk University Research Fund of 2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3