Development of a Novel Structured Mesh-Type Pd/γ-Al2O3/Al Catalyst on Nitrobenzene Liquid-Phase Catalytic Hydrogenation Reactions

Author:

Tian Haoran1,Shu Qingli1,Xie Zukun1,Lu Hongye1,Zhang Qi1

Affiliation:

1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Nitrobenzene liquid-phase catalytic hydrogenation is commonly regarded as one of the most effective technologies for aniline production. The traditional granular catalysts have the disadvantages that the reactor bed pressure drop is large and the mass transfer efficiency between gas and liquid phases is low. In this study, a novel structured mesh-type Pd/γ-Al2O3/Al catalyst was prepared by anodic oxidation and pore structures of γ-Al2O3/Al supports were constructed by acid pore-widening treatments. The results showed that acid pore-widening treatments can improve the pore size of γ-Al2O3/Al supports; the support with HNO3 pore-widening treatment exhibited the largest pore size, being enlarged from 3.7 nm to 4.6 nm. The Pd/γ-Al2O3/Al catalysts prepared with different acid pore-widening treatment supports contribute to the increased active metal Pd loading, more Pd0 content, and better dispersion of the Pd particles. The catalyst prepared with HNO3 pore-widening treatment support exhibited the largest active metal Pd loading, enlarging from 1.82% to 1.95%, the largest Pd0 content being enlarged from 52.1% to 58.5% and the smallest Pd particle size being reduced from 103 nm to 41 nm, resulting in the highest nitrobenzene conversion, increasing from 67.2% to 74.3%. Eventually, we calculated that the pressure drop of structured catalysts was 1/72 of that of granular catalysts, resulting in a better diffusion of the H2 through nitrobenzene solution to active sites on the catalyst surface and a significant increase in the catalytic activity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3