Dynamic Scheduling Based on Predicted Inventory Variation Rate for Public Bicycle System

Author:

Gao LiangORCID,Xu Wei,Duan Yifeng

Abstract

To improve efficiency and reduce the total scheduling cost of the public bicycle system (PBS), dynamic scheduling based on the predicted inventory variation rate (DS-PIVR) is proposed. Regarding a station in the PBS as an inventory system, its inventory variation rate during the scheduling period and its inventory rate at the end of the scheduling period were predicted based on the stationary Markov process condition. A mixed integer programming (MIP) model, whose objective is to minimize the total scheduling distance, was established to describe the dynamic scheduling problem (DSP). Results from Boston and Washington D.C. PBSs show that, when compared to the dynamic scheduling based on the rolling horizon (DS-RH), the DS-PIVR method could at most shorten the routing distance by 62.25% (for Boston) and 74.7% (for Washington D.C.) among all scheduling areas, and could at most shorten the total routing distance for the whole PBS by 21.06% (for Boston) and 17.26% (for Washington D.C.). Moreover, the DS-PIVR method makes the repositioning vehicle journey only once and keeps the inventory rate of each station in balance during the scheduling period. Furthermore, the DS-PIVR method provides a promising reference to improve the operation efficiency by reducing the scheduling cost and the quality of service by satisfying the users’ demand in time during the rush hours for the PBS operators.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3