Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study

Author:

Galani Andriani,Noutsopoulos ConstantinosORCID,Anastopoulou Petra,Varouxaki Alexia,Mamais Daniel

Abstract

Increased groundwater and soil contamination by hexavalent chromium have led to the employment of a variety of detoxification methods. Biological remediation of Cr(VI) polluted aquifers is an eco-friendly method that can be performed in situ by stimulating the indigenous microbial population with organic and inorganic electron donors. In order to study the effect of different redox conditions on microbial remediated Cr(VI) reduction to Cr(III), microcosm experiments were conducted under anaerobic, anoxic, and sulfate-reducing conditions and at hexavalent chromium groundwater concentrations in the 0–3000 μg/L range, with groundwater and soil collected from an industrial area (Inofyta region). As electron donors, molasses, emulsified vegetable oil (EVO), and FeSO4 were employed. To quantitatively describe the degradation kinetics of Cr(VI), pseudo-first-order kinetics were adopted. The results indicate that an anaerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III), while the addition of Fe2+ can further increase Cr(VI) removal rate significantly. Furthermore, Cr(VI) microbial reduction is possible in the presence of NO3− at rates comparable to anaerobic Cr(VI) microbial reduction, while high sulfate concentrations have a negative effect on Cr(VI) bioreduction rates in comparison to lower sulfate concentrations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3