Novel Electromagnetic Characterization Methods for New Materials and Structures in Aerospace Platforms

Author:

Ramos DavidORCID,Cidrás JoséORCID,Plaza BorjaORCID,Moravec Carolina,de la Torre Antonia,Frövel Malte Richard KarlORCID,Poyatos DavidORCID

Abstract

The tendency over the last decades in the aerospace industry is to substitute classic metallic materials with new composite materials such as carbon fiber composites (CFC), fiber glass, etc., as well as adding electronic devices to ensure the safety and proper platform operation. Due to this, to protect the aircraft against the Electromagnetic Environmental Effects (E3), it is mandatory to develop accurate electromagnetic (EM) characterization measurement systems to analyze the behavior of new materials and electronic components. In this article, several measurement methods are described to assess the EM behavior of the samples under test: microstrip transmission line for a surface current analysis, free space to obtain intrinsic features of the materials and shielding effectiveness (SE) approaches to figure out how well they isolate from EM fields. The results presented in this work show how the different facilities from the National Institute of Aerospace Technology (INTA) are suitable for such purposes, being capable of measuring a wide variety of materials, depending on the type of test to be carried out.

Funder

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3