Effects of Process Cutting Parameters on the Ti-6Al-4V Turning with Monolithic Driven Rotary Tool

Author:

Joch RichardORCID,Šajgalík MichalORCID,Czán Andrej,Holubják Jozef,Cedzo Miroslav,Čep RobertORCID

Abstract

Machining with rotating tools appears to be an efficient method that employs a non-standard kinematic turning scheme. It is used in the machining of materials that we classify in the category of difficult to machine. The titanium alloy Ti-6Al-4V, which is widely used in industry and transportation, is an example of such material. Rotary tool machining of titanium alloys has not been the subject of many studies. Additionally, if researchers were dissatisfied with their findings, the reason may not be the kinematic machining scheme itself but rather the tool design and the choice of cutting parameters. When tools are constructed of several components, inaccuracies in production and assembly can arise, resulting in deviations in the cutting part area. A monolithic driven rotary tool eliminates these factors. In the machining process, however, it may react differently from multi-component tools. The presented work focuses on the research of the technology for machining titanium alloy Ti-6Al-4V using a monolithic driven rotary tool. The primary goal is to gather data on the impact of cutting parameters on the machining process. The cutting force and the consequent integrity of the workpiece surface are used to monitor the process. The speed of workpiece rotation has the greatest impact on the process; as it increases, the cutting force increases, as do the values of the surface roughness. In the experiment, lower surface roughness values were attained by increasing the feed parameter and the depth of cut. This may predetermine the inclusion of a kinematic scheme in highly productive technologies.

Funder

Strategic implementation of additive technologies to strengthen the intervention capacities caused by the COVID-19 pandemic

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3