Microstructural Constituents and Mechanical Properties of Low-Density Fe-Cr-Ni-Mn-Al-C Stainless Steels

Author:

Scherbring SteffenORCID,Chen Guanghui,Veltel BastianORCID,Bartzsch Gert,Richter JuliaORCID,Vollmer MalteORCID,Blankenburg Malte,Shyamal SaikatORCID,Volkova Olena,Niendorf ThomasORCID,Lienert Ulrich,Sahu Puspendu,Mola JavadORCID

Abstract

Metallic material concepts associated with the sustainable and efficient use of resources are currently the subject of intensive research. Al addition to steel offers advantages in view of lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1–6) (wt.%) stainless steels to assess its influence on microstructure and mechanical properties. According to density measurements based on Archimedes’ principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.% Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the increase in strength due to the presence of ferrite was more pronounced compared to standard duplex stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3