Mechanical and Acoustic Properties of Alloys Used for Musical Instruments

Author:

Stanciu Mariana DomnicaORCID,Cosnita Mihaela,Cretu Constantin NicolaeORCID,Teodorescu Horatiu Draghicescu,Trandafir Mihai

Abstract

Music should be integrated into our daily activities due to its great effects on human holistic health, through its characteristics of melody, rhythm and harmony. Music orchestras use different instruments, with strings, bow, percussion, wind, keyboards, etc. Musical triangles, although not so well known by the general public, are appreciated for their crystalline and percussive sound. Even if it is a seemingly simple instrument being made of a bent metal bar, the problem of the dynamics of the musical triangle is complex. The novelty of the paper consists in the ways of investigating the elastic and dynamic properties of the two types of materials used for musical triangles. Thus, to determine the mechanical properties, samples of material from the two types of triangles were obtained and tested by the tensile test. The validation of the results was carried out by means of another method, based on the modal analysis of a ternary system; by applying the intrinsic transfer matrix, the difference between the obtained values was less than 5%. As the two materials behaved differently at rupture, one having a ductile character and the other brittle, the morphology of the fracture surface and the elementary chemical composition were investigated by scanning electron microscopy (SEM) and analysis by X-ray spectroscopy with dispersion energy (EDX). The results were further transferred to the finite element modal analysis in order to obtain the frequency spectrum and vibration modes of the musical triangles. The modal analysis indicated that the first eigenfrequency differs by about 5.17% from one material to another. The first mode of vibration takes place in the plane of the triangle (transverse mode), at a frequency of 156 Hz and the second mode at 162 Hz, which occurs due to vibrations of the free sides of the triangle outside the plane, called the torsion mode. The highest dominant frequency of 1876 Hz and the sound speed of 5089 m/s were recorded for the aluminum sample with the ductile fracture in comparison with the dominant frequency of 1637 Hz and the sound speed of 4889 m/s in the case of the stainless steel sample, characterized by brittle fracture.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3