Thresholding Methods for Reduction in Data Processing Errors in the Laser-Textured Surface Topography Measurements

Author:

Podulka PrzemysławORCID

Abstract

There are many factors influencing the accuracy of surface topography measurement results: one of them is the vibrations caused by the high-frequency noise occurrence. It is extremely difficult to extract results defined as noise from the real measured data, especially the application of various methods requiring skilled users and, additionally, the improper use of software may cause errors in the data processing. Accordingly, various thresholding methods for the minimization of errors in the raw surface topography data processing were proposed and compared with commonly used (available in the commercial software) techniques. Applied procedures were used for the minimization of errors in the surface topography parameters (from ISO 25178 standard) calculation after the removal and reduction, respectively, of the high-frequency noise (S-filter). Methods were applied for analysis of the laser-textured surfaces with a comparison of many regular methods, proposed previously in the commercial measuring equipment. It was found that the application of commonly used algorithms can be suitable for the processing of the measured data when selected procedures are provided. Moreover, errors in both the measurement process and the data processing can be reduced when thresholding methods support regular algorithms and procedures. From applied, commonly used methods (regular Gaussian regression filter, robust Gaussian regression filter, spline filter and fast Fourier transform filter), the most encouraging results were obtained for high-frequency noise reduction in laser-textured details when the fast Fourier transform filter was supported by a thresholding approach.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3