Abstract
The main goal of this research is to show that even a small deviation from the prescribed casting method EN 14651 causes a difference in fiber orientation distribution in sample beams. A further goal is to investigate the difference in the fiber orientation between bottom and side layers, which would carry the tensile load in the in-situ situation (bottom layer) compared to testing according to EN 14651 (side layer). Nowadays, the development of the proper numerical simulations that aim to visualize the casting process of the fresh concrete flow is a promising challenge in the construction industry. To be able to predict the orientation and spatial distribution of the short fibers using numerical tools may significantly simplify the investigations of the fibered composite materials. This paper compares simulations of different casting methods of the fiber concrete mixture with various flowabilities. The casting of the testing specimen was simulated in different ways: the filling of the formwork according to EN 14651, from the center only and from one edge of the formwork using computational fluid dynamics. The influence of different casting methods in combination with four specific sets of the rheological parameters on the final fiber orientation distribution is discussed. The presented outcomes of the simulations demonstrate that even a minor change in the casting procedure can significantly alter the final characteristics of the material.
Funder
Estonian Research Council
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites