Effect of Obstacles Gradient Arrangement on Non-Uniformly Distributed LPG–Air Premixed Gas Deflagration

Author:

Gao Jianfeng,Ai BingjianORCID,Hao Bin,Guo Bingang,Hong Bingyuan,Jiang Xinsheng

Abstract

The arrangement of obstacles can significantly impact the deflagration behavior of combustible gases. In the actual pipeline accident site, liquefied petroleum gas (LPG) and other gases often show non-uniform distribution after leakage owing to diffusion and gravity, and the deflagration mechanism is also more complex. In this paper, based on the non-uniform distribution of combustible gases, the flame behavior and overpressure characteristics of LPG–air combustible gas deflagration are carried out by a combination of experiments and numerical simulations with obstacles arranged in increasing and decreasing blockage height. The results show that in the increasing blockage height arrangement, the flame forms a “straw hat” cavity, finally forming an elliptical region. In the decreasing blockage height arrangement, the flame appears as a “ribbon-shaped” narrow, blank area, which gradually becomes longer with time. By observing the overpressure and the structure of flame propagation in the coupled state, it is found that the explosion overpressure is maximum when the height of the obstacle is consistent, and the moment of the maximum area of flame appears slightly earlier than the appearance of the maximum overpressure peak. At the same time, without considering the change in height of the obstacle, the three arrangements all have an accelerating effect on the flame of deflagration. And the decreasing blockage height arrangement condition has the most obvious effect on the flame acceleration, which makes the peak of area of flame and the overpressure peak appear at first, and finally leads to the formation of a positive feedback mechanism among the speed of flame propagation, the area of flame and overpressure. In addition, in the case of the non-uniform distribution of combustible gases, the acceleration obtained by the flame at the initial stage is very important for the overall acceleration of the flame. The results of this paper can provide a reference for the placement of equipment and facilities in long and narrow spaces such as various pipe galleries, and to make predictions about the impact of the shape of some objects on the explosion and provide a theoretical basis for the prevention and management of gas explosions.

Funder

Science Technology Department of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3