Effect of Filter Medium on Water Quality during Passive Biofilter Activation in a Recirculating Aquaculture System for Oncorhynchus mykiss

Author:

Nędzarek ArkadiuszORCID,Bonisławska MałgorzataORCID,Tórz Agnieszka,Tański Adam,Formicki Krzysztof

Abstract

High-performance biofilters for water purification in recirculating aquaculture systems (RAS) ensure the safety of cultures of highly nutritious fish. As the most critical step in the functioning of biofilters is their activation, the objective of this study was to evaluate the suitability of commercial artificial media, namely RK Plast (BR-1), Mutag-BioChip30 (BR-2), and LevaPor (BR-3), for the passive activation of biofilters used in rainbow trout farming. Changes in NH4+-N, NO2−-N, NO3− -N, phosphorus, and carbon concentrations were analyzed. In the first period, an increase in NH4+-N concentration was recorded, before an increase in NO2−-N concentration (maximum concentrations ranged 0.728–1.290 and 0.982–5.198 mg N dm−3, respectively), followed by a reduction and stabilization to a level safe for the fish (both below 0.100 mg N dm−3). Concurrently, a steady increase in NO3−-N concentration was noted, with a maximum concentration between 6.521 and 7.326 mg N dm−3. Total phosphorus and total carbon ranged from 0.423 to 0.548 mg P dm−3, and from 43.8 to 45.2 mg C dm−3. The study confirmed the feasibility of using the tested artificial biofilter media for rainbow trout farming in RAS with passive biofilter activation. Biofilter activation efficiency was highest for the media with the highest specific surface area (BR-2 and BR-3). The removal of ammonium nitrogen and nitrite nitrogen was above 90%. Nitrogen biotransformation was not limited by phosphorus or carbon concentrations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3