Life Test Optimization for Gas Turbine Engine Based on Life Cycle Information Support and Modeling

Author:

Valeev SagitORCID,Kondratyeva NatalyaORCID

Abstract

The task of choosing the modes and duration of life tests of complex technical objects, such as aircraft engines, is a complex and difficult-to-formalize task. Experimental optimization of the parameters of life tests of complex technical objects is costly in terms of material and time resources, which makes such an approach to the choice of test parameters practically difficult. The problem of life test optimization for gas turbine engines on the basis of the engine life cycle information support and statistical modeling is discussed. Within the framework of the research, the features of the optimization of life tests based on simulation modeling of the life cycle of gas turbine engines were studied. The criterion of the efficiency of the life tests was introduced, and this characterized the predicted effect (technical and economic) of the operation of a batch of engines, the reliability of which was confirmed by life tests; a method of complex optimization of resource tests in the life cycle system was developed. An objective function was formed for the complex optimization of life tests based on life cycle simulation. The principles of formation and refinement of the simulation model of the life cycle for the optimization of life tests were determined. A simulation model of the main stages of the life cycle of an auxiliary gas turbine engine was developed. A study was performed on the influence of the quality of the production of “critical” engine elements, the system of engine acceptance and shipment, as well as the effect of a range of parameters of the engine loading mode on the efficiency of the life tests of an auxiliary gas turbine engine. The optimal parameters of periodic life tests of an auxiliary gas turbine engine were determined by simulation modeling in the life cycle system, which made it possible to increase the equivalence of tests by several times and reduce their duration in comparison with the program of serial tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Trends in Development of Accelerated Testing for Automotive and Aerospace Engineering

2. Life Cycle Reliability Engineering

3. Gas Turbines: A Handbook of Air, Land and Sea Applications;Soares,2015

4. Gas Turbine Propulsion Systems;MacIsaac,2011

5. Accelerated life tests at higher usage rates: a case study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3