Method and a Device for Testing the Friction Force in Precision Pairs of Injection Apparatus of the Self-Ignition Engines

Author:

Monieta JanORCID

Abstract

This article reviews the state of the knowledge and technology in the field of friction-loss measurements in internal combustion piston engines. The dependencies that describe the loss of energy in combustion engines and injection apparatus are presented. Currently, very little can be found in the literature on the study of frictional forces in injection apparatus, but mainly in the piston–cylinder group, so this work significantly fills that gap. The aim of this article is to construct a device and to develop a method for assessing the technical state of injector nozzles to minimize friction losses in internal combustion engines at the stages of evaluation, design, production and operation. This article presents a stand for determining the maximum friction forces due to gravity loading by water-jet control. This article also presents test results on the maximum friction force between a needle and a body of injector nozzles in piston combustion engines on a designed and purpose-built stand outside of the combustion engine. Various designs and injector nozzles are made from various types of alloy steel for marine and automotive piston internal combustion engines fueled with distillation or residual fuels, and are tested. The research concerned conventional elements for the injection apparatus as well as electronically controlled subsystems. Precision pairs of injection equipment are selected for the tests: new ones are employed after the storage period and operated in natural conditions. The elements dismantled from the internal combustion engines are tested in the presence of fuel or calibration oil of similar properties. The maximum static frictional forces under the hydrostatic loading are measured, alongside the parameters for the dynamic movement of the nozzle needles from bodies of the injector nozzle as time, speed, acceleration and dynamic force. The influence of the angular position of the needle in relation to the bodies of the precision pairs conventional internal combustion engines, the diametral clearance between the nozzle body and needle, and the surface conditions on the values of the maximum friction force are also presented. Errors in shape and position result in the uniqueness of the friction force at the mutual angular position of the needle in relation to the nozzle body, and the decrease in diametral clearance and deterioration of the surface state increase the friction losses. A model was elaborated of the influence of various factors on the value of the maximum friction force.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3